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In this paper an initial}boundary value problem for the vertical displacement of a weakly
non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends
of the beam is studied. The initial}boundary value problem can be regarded as a simple
model describing oscillations of #exible structures like suspension bridges or iced overhead
transmission lines. Using a two-time-scales perturbation method an approximation of the
solution of the initial}boundary value problem is constructed. Interactions between di!erent
oscillation modes of the beam are studied. It is shown that for certain external excitations,
depending on the phase of an oscillation mode, the amplitude of speci"c oscillation modes
changes.

( 2000 Academic Press
1. INTRODUCTION

Flexible structures, like tall buildings, suspension bridges or iced overhead transmission
lines with bending sti!ness, are subjected to oscillations due to di!erent causes. Simple
models which describe these oscillations can involve non-linear second and fourth order
partial di!erential equations (PDEs), as can be seen, for example, in references [1] or [2]. In
many cases, perturbation methods can be used to construct approximations for solutions of
this type of second or fourth order equations. Initial}boundary value problems for second
order PDEs have been considered for a long time, for instance, in references [3}9]. These
problems have been studied in references [2, 10}15], using a two-time-scales perturbation
method or a Galerkin-averaging method to construct the approximations. For fourth order
PDEs the analysis is more complex. In a number of papers [1, 16}18], approximations for
solutions of initial}boundary value problems for fourth order weakly non-linear PDEs are
constructed using perturbation methods. In most cases, the solutions are approximated by
a single-mode representation, without justi"cation as to whether truncation to one mode is
valid. In this paper, approximations are constructed using a two-time-scales perturbation
method. The interaction between the di!erent oscillation modes is studied and
a justi"cation is given in which cases mode truncation is valid. For fourth order strongly
non-linear PDEs numerical "nite element methods can be used, as is done for example in
reference [19].

In this paper, we will consider the following initial-boundary value problem, which
describes, up to O (e), the vertical displacement of an elastic beam with a linear spring force
and a constant gravity force acting on it, and with an external force F (t) acting on the ends
0022-460X/00/320201#17 $35.00/0 ( 2000 Academic Press
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of the beam in horizontal direction:
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where F (t)"u(n, t)!u (0, t) and e a small dimensionless parameter. For the derivation of
this problem we refer to section 2.

In this paper, formal approximations, i.e., functions that satisfy the di!erential equation
and the initial and boundary values up to some order in e, will be constructed for the
initial}boundary value problem (1)}(4), using a Fourier-mode expansion and a two-time-
scales perturbation method. The interaction (energy exchange) between the di!erent
oscillation modes will be considered for the cases F(t)"0 (no external forcing, that is, the
ends of the beams are "xed in horizontal direction, i.e., the case of free vibrations) and
F(t)"C cos(ut) (external forcing). It will be shown that in the case F (t)"0 the amplitudes
of the di!erent modes are constant and the only interaction between the modes occurs in the
phases of the di!erent oscillations modes (for example, mode n causes a phase shift of the
phases of all other modes mOn). No internal resonances occur. In this paper, we mean by
internal resonance that there is an energy transfer from one oscillation mode to another
oscillation mode. So by no internal resonance we mean no energy transfer occurs between
the di!erent oscillation modes (up to O (e) on a time-scale of order e~1). The case
F(t)"C cos (ut) is more complicated. It will be shown that for most values of u the analysis
is similar to the case F (t)"0. The in#uence of F (t) in that case is of O (e) on a time-scale of
order e~1, and extra terms appear in the O (e)-approximation. However, for speci"c values of
u, i.e., u+2u

kp
, where u

kp
is an eigenfrequency of the linearized system (e"0), the

in#uence of F (t) is of O (1) on a time-scale of order e~1. The amplitude of mode k is no longer
constant, but the amplitudes of all other modes remain constant. The mode interactions
remain restricted to phase shifts of the phases of the di!erent oscillation modes. Similar
mode interactions have been studied for example in references [11, 12, 20, 21], but to our
knowledge these mode interactions for weakly non-linear beam equations have not yet been
studied thoroughly. The analysis presented in this paper hold for all p2-values, which is
di!erent from the analysis in references [11] or [12], where mode interactions and internal
resonances occur for speci"c p2-values.

The outline of the paper is as follows. In section 2, the initial}boundary value problem
(1)}(4) will be derived. In section 3, we apply a two-time-scales perturbation method to the
initial}boundary value problem (1)}(4). We show that for most values of u the amplitudes of
the di!erent oscillation modes remain constant. For speci"c u-values the oscillation of
speci"c modes changes and the amplitudes of certain modes are no longer constant. We
construct a formal approximation of O(e) for solutions of the initial}boundary value
problem for the cases F (t)"0, F (t)"C cos(ut) with uO2u

kp
#ea and F(t)"C cos(ut)

with u"2u
kp
#ea, where a3R is a detuning parameter. In section 4, the mode interactions

between the di!erent oscillation modes will be studied in detail for the three cases
mentioned above. In Section 5, some conclusions and general remarks will be given.
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2. A MATHEMATICAL FORMULATION OF THE PROBLEM

To derive the equations of motion for an elastic beam we will follow part of the analysis
given in reference [22]. We consider an elastic beam of length l, simply supported in
a vertical direction. An external force will be applied at the ends of the beam such that the
ends of the beam can move in horizontal direction only. Oscillations are possible due to the
strain of the beam. The x-axis is de"ned to be the horizontal axis. The z-axis is de"ned to be
the vertical axis. The y-axis is perpendicular to the (x, z)-plane. We introduce the following
symbols: k is the mass of the beam per unit length, o the mass density of the beam, A the
area of the cross-section Q of the beam perpendicular to the x-axis (so k"oA ), E the
elasticity modulus (Young's modulus), I the axial moment of inertia of the cross-section.
The inertial axes of the cross-section Q are the y- and z-axes, so I"::

Q
z2dy dz. We assume

that the beam can move in the x- and z-directions only. The vertical displacement of the
beam from rest is w"w(x, t), the horizontal displacement of the beam is u"u (x, t). The
curvature of the beam in the (x, z)-plane can be approximated by w

xx
as follows. From

Figure 1 we can see that the radius R of the curvature is given by RDu+Ds, where Du and

Ds are de"ned in Figure 1. Furthermore, tanDu+Dw/Dx and Ds+J (Dx)2#(Dw)2. For
DxP0 this gives us R"(1#w2

x
)3@2/w

xx
. Assuming that w

x
is small with respect to 1, we

can approximate the curvature, which is equal to 1/R, by w
xx

. Using this, the strain e
xx

due
to &&pure'' bending of a line-element of the beam at a distance z from the line of centroids (the
x-axis) is given by
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Furthermore, the strain e
x0

due to stretching of the line of centroids of a line-element of the
beam can be approximated by u

x
#1

2
w2
x

as follows. From Figure 2 and the de"nition of
strain due to stretching, which can be found in any standard textbook on mechanics (see, for
example, reference [23]) we have the following expression for e

x0
:

e
x0
"

J(Dx#Du)2#(Dw)2!Dx

Dx
.

Figure 1. The bending of a line-element Dx.



Figure 2. The stretching of a line-element Dx.
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For DxP0 this gives us e
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The total strain of a line-element of the beam at a distance z from the x-axis is given by
e
x
"e

x0
#e

xx
"u

x
#1

2
w2
x
!zw

xx
. It is shown in reference [22] that, using Hooke's Law,

the work performed to de#ect the beam from its initial position, is
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The kinetic energy of the beam is given by
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Using equations (5) and (6) the Hamiltonian integral is
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Using Hamilton's Principle, which states that the variation of F is equal to 0, the Euler
equations for this problem are
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The system given by equations (8)}(9) can be simpli"ed by the following assumption,
introduced by Kirchho! (see reference [24]): the velocity of the beam in x-direction, u

t
, is

small compared to w
t

and can be neglected in equation (7), so
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Figure 3. A simple model of a suspension bridge.
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From equation (10) we get u
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us the following equation for the vertical displacement w:

kw
tt
#EIw

xxxx
!

EA

l Cu(l, t)!u(0, t)#
1

2 P
l

0

w2
x
dxDw

xx
"0. (12)

If other external forces are considered, the right-hand side of equation (12) becomes
non-zero.

In reference [1] a survey of literature on oscillations of suspension bridges is given. Using
a similar analysis, we will derive simpli"ed model for non-linear oscillations in suspension
bridges, where the vertical displacement of an elastic beam is given by equation (12). We
model the suspension bridge as a beam of length l. In this paper, the stays of the bridges are
modelled as two-sided springs, as sketched in Figure 3. In reference [12], the stays of the
bridge are modelled as two-sided springs with a small non-linearity (ew2 ). A next step would
be to model the springs using w` and w~, as is done, for example, in reference [1]. The
torsional vibration of the beam is not taken into account (that is, is considered to be small
compared to the vertical vibration). We introduce the following symbols: i, the spring
constant of the stays of the bridge, and=, the weight of the bridge per unit length, which we
consider to be constant, i.e., ="kg, with g the gravitational acceleration. The equation
describing the vertical displacement of the beam then is
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Equation (13) will be simpli"ed by eliminating the term !kg using w"wJ #(kg/i) s (x),
where s(x) satis"es the following time-independent linear equation with boundary
conditions:
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It can be shown that with b"(i/4EI)1@4 , s(x)"cos ( bx) (cosh (bx)!1#(sin(bl ) sin
(bx) cosh(bx)!(sinh(bl ) cos(bx) sinh(bx))/ (cos (bl )#cosh (bl)). The term (kg/i) s(x)
represents the de#ection of the beam in static state due to gravity.
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Using the dimensionless variables
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Assuming that the area A of the cross-section is small compared to the length l, we put
eN"A/l, with e6 a small parameter. We assume w, and therefore wN , to be of O (eN ). Furthermore,
we assume that the de#ection of the beam in a static state due to gravity, (kg/i) s, is small
with respect to the vertical displacement wN , which is of order e6 . This means we assume kg/i
is O (eN n), with n'1, since s (x) is of order 1, as can be seen from the expression for s which
was given above (as well as s(1) (x) and s(2) (x)). Since H"O(1), equation (14) becomes
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with m'2 and p2wN "(l/n)4i/EI. Setting e"1
4
(A/l ) eN 2, we can now introduce the following

initial}boundary value problem, which describes, up to O (en), n'1, the vertical
displacement of an elastic beam with a linear spring force and a constant gravity force
acting on it, and with an external force F (t) acting on the ends of the beam in horizontal
direction:
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where F (t)"u (n, t)!u (0, t) and e a small dimensionless parameter. In this paper, we are
interested in an harmonic excitation of the ends of the beam in horizontal direction, which
means we take F (t)"C cos(ut), with C a constantO0 which represents the amplitude of
the external excitation and u the frequency of the external excitation. Since we consider
u
t
small compared to w

t
, it can be shown that u must be of O(1). Furthermore, u can be

taken positive without loss of generality. Furthermore, e and p are constants with 0(e@1
and p'0, w"w (x, t) is the vertical displacement of the beam, x is the co-ordinate along the
beam, w

0
(x) is the initial displacement of the beam in vertical direction and w

1
(x) is the

initial velocity of the beam in vertical direction. All functions are assumed to be su$ciently
smooth. The "rst two terms on the left-hand side of equation (15) are the linear part of the
beam equation, p2w represents the linear restoring force of the spring, ( :n

0
w2
x
dx )w

xx
is due

to the strain of the beam and F (t)w
xx

is due to an external force acting on the ends of the
beam in horizontal direction. The boundary conditions describe a simply supported beam.
As we showed above, the initial}boundary value problem (15)}(18) can be considered as
a simple model for non-linear oscillations in suspension bridges. In the next section,
a formal approximation of the solution of (15)}(18) will be constructed.

3. THE CONSTRUCTION OF FORMAL APPROXIMATIONS*GENERAL CASE

In this and the next section, we construct a formal approximation of the solution of the
initial}boundary value problem (15)}(18). When straightforward e-expansions are used to
approximate solutions, secular terms can occur in the approximations. To avoid these
secular terms we use a two-time-scales perturbation method.

The boundary conditions imply that w can be written as a Fourier sine-series in x:
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As stated above, terms that give rise to secular terms may occur on the right-hand side of
equation (19). To eliminate these terms we introduce two time-scales, t
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and collect equal powers in e. The O (e0)-problem becomes
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For F (t),0 it can be seen easily from equation (A2) (see Appendix A) that the equations
for A
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will be no energy present up to O (e) on a time-scale of order e~1. We say the coupling
between the modes is of O (e). This allows truncation to those modes that have non-zero
initial energy. In this case, there is an interaction between all modes with non-zero initial
energy, but this interaction does not give rise to internal resonances. It will be shown in
section 4.1 that all modes oscillate with a constant amplitude and a linearly changing phase,
depending on the initial amplitudes of the oscillation modes. We will discuss equations (27)
and (28) in more detail in section 4.1.
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#B2
m,0

)D

!

1

4

k2

u
kp

C (A
k,0

sin(at
1
)#B

k,0
cos(at

1
)), (29)

dB
k,0

dt
1

"

1

4

k2

u
kp

A
k,0 C

3

2
k2 (A2

k,0
#B2

k,0
)# +

mOk

m2 (A2
m,0

#B2
m,0

)D

!

1

4

k2

u
kp

C (A
k,0

cos(at
1
)!B

k,0
sin(at

1
)). (30)

For nOk equations (27) and (28) still hold. We see that for F (t)"C cos(ut) with
u"2u

kp
#ea the in#uence of F (t) is of O (1) on a time-scale of order e~1 and extra terms

appear in the equations for A
k,0

, B
k,0

. We see that if A
n,0

(0)"B
n,0

(0)"0 then for all
t
1
'0A

n,0
(t
1
)"B

n,0
(t
1
),0, which holds for all n. So, if we start with zero initial energy in

the nth mode, there will be no energy present up to O(e) on a time-scale of order e~1. We say
the coupling between the modes is of O (e). This again allows truncation to those modes that
have non-zero initial energy. In this case, there is an interaction between all modes with
non-zero initial energy and this interaction does not give rise to internal resonances. It will
be shown in section 4.2.2 that for all modes nOk the oscillation has a constant amplitude
and a linearly changing phase, depending on the initial values of the oscillation modes.
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Mode k, however, oscillates with changing amplitude and phase, due to the in#uence of F(t).
We will discuss equation (29) and (30) in more detail in section 4.2.2.

When A
n,0

and B
n,0

have been determined, and thus q
n,0

, we have constructed an
approximation v of the exact solution w of the initial}boundary value problem (15)}(18):

v (x, t; e)"
=
+
n/1

(q
n,0

(t
0
, t

1
)#eq

n,1
(t
0
, t

1
) ) sin (nx) (31)

with q
n,0

(t
0
, t

1
)"A

n,0
(t
1
) cos (u

np
t
0
)#B

n,0
(t
1
) sin (u

np
t
0
) and q

n,1
(t
0
, t

1
)"qinh

n,1
(t
0
, t

1
)#

A
n,1

(t
1
) cos (u

np
t
0
)#B

n,1
(t
1
) sin (u

np
t
0
), with qinh

n,1
an inhomogeneous solution of equation

(26). A
n,1

(t
1
) and B

n,1
(t
1
) can be constructed such that secular term in the O (e2)

approximation are eliminated. Since we are interested in the O(1) and O (e) approximations,
we consider A

n,1
and B

n,1
to be constant functions which depend on the initial values for

q
n,1

which are given in equation (25). From equation (A2) in Appendix A it can be shown
elementarily that, for uO2u

kp
#ea, qinh

n,1
is of the following form:

qinh
n,1

"D
1
cos (3u

np
t
0
)#D

2
sin (3u

np
t
0
)# +

mOn

E
1,m

cos((2u
mp
!u

np
)t

0
)

# +
mOn

E
2,m

sin((2u
mp
!u

np
)t

0
)# +

mOn

F
1,m

cos((2u
mp
#u

np
)t

0
)

# +
mOn

F
2,m

sin((2u
mp
#u

np
)t

0
)

#G
1
C cos ((u!u

np
) t

0
)#G

2
C sin ((u!u

np
) t

0
), (32)

where D
1
, D

2
, E

1,m
, E

2,m
, F

1,m
, F

2,m
, G

1
, G

2
can be determined easily as functions of A

n,0
,

B
n,0

, A
m,0

, B
m,0

. For u"2u
kp
#ea, qinh

n,1
is given by equation (32) with G

1
"G

2
"0. The

approximation v given by equation (31) satis"es equations (15)}(18) up to order e. In
reference [12] an asymptotic theory for a similar problem has been presented. This
asymptotic theory implies that approximations v as constructed above are O (e)
approximations of the exact solution on a time-scale of order e~1.

In the next section, we discuss the behavior of the solutions for A
n,0

, B
n,0

for three
di!erent cases: F (t)"0, F (t)"C cos(ut

0
) with uO2u

kp
#ea and F (t)"C cos(ut

0
) with

u"2u
kp
#ea, with a"0 and aO0 (detuning).

4. MODAL INTERACTIONS

4.1. THE CASE F(t)"0

In the previous section, equations (27) and (28) were given for A
n,0

and B
n,0

. We
introduce polar co-ordinates to transform these equations

A
n,0

"r
n
cos(/

n
), B

n,0
"r

n
sin(/

n
) (33)

with the amplitude r
n
"r

n
(t
1
) and the phase of the oscillation /

n
"/

n
(t
1
). We get the

following equations for r
n
, /

n
, for n"1, 2, 3,2:

rR
n
"0, /Q

n
"!

1

4

n2

u
np
C
3

2
n2r2

n
# +

mOn

m2r2
m
c2
mD , (34, 35)
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where the dot represents di!erentiation with respect to t
1
. The solution for equations (34)

and (35) is

r
n
"c

1,n
, /

n
"!

1

4

n2

u
np
C
3

2
n2c2

1,n
# +

mOn

m2c2
1,mD t

1
#c

2,n
,

for n"1,2, 3,2, where c
1,n

, c
2,n

are constants of integration determined by the initial
values A

n,0
(0) and B

n,0
(0). In the phase space (r

n
, /

n
) we have the orbits given by r

n
"c

1,n
and /Q

n
(0. In this case, the interaction between the oscillation modes is restricted to

interaction between the phases of the modes. This interaction depends on the initial values.
This means the following: if we increase the initial amplitude of mode n, then due to the
interaction with for instance mode m the frequency of mode m becomes higher, and mode
m then has a shorter period. There are no internal resonances and no oscillation modes with
initial energy zero are excited (as was for instance the case in references [11] or [12]).

4.2. THE CASE F(t)"C cos (ut
0
) WITH CO0

In appendix A it is shown that only for speci"c values of u extra interactions occur
between the di!erent oscillation modes. These values are u"2u

kp
with k"1, 2, 3,2 . We

therefore consider the following cases separately.

4.2.1. ¹he case uO2u
kp
#ea

As stated in the previous section, the equations for A
n,0

, B
n,0

for all n, are equal to the
equations for the case F(t)"0. There is no extra interaction between the di!erent
oscillation modes due to the external force F (t).

4.2.2. ¹he case u"2u
kp
#ea

In the previous section equations (29) and (30) were given for A
k,0

and B
k,0

. For A
n,0

,
B
n,0

, nOk equations (27) and (28) hold. We transform these equations using equation (33)
and get the following equations for the oscillation modes k and n(Ok):

rR
k
"!

1

4

k2

u
kp

r
k
C sin (2/

k
#at

1
), (36)

/Q
k
"!

1

4

k2

u
kp
C
3

2
k2r2

k
# +

mOk

m2r2
m
#C cos (2/

k
#at

1
),D , (37)

rR
n
"0, nOk, (38)

/Q
n
"!

1

4

n2

u
np
C
3

2
n2r2

n
# +

mOn

m2r2
mD , nOk. (39)

We start our analysis of equations (36)}(39) by assuming that there is initial energy
present in mode k only, which means the initial conditions are such that initially the system
oscillates in one mode only (mode k). That is w (x, 0)"q

k
(0) sin kx, w

t
(x, 0)"qR

k
(0) sin kx and

so r
n
(0)"0 ∀nOk. Furthermore, we introduce t"2/

k
#at

1
. This means we get the



TABLE 1

Critical points for C'0

a-range No. of critical
points

Critical points Behaviour

a(!

k2

2u
kp

C 0 * *

a"!

k2

2u
kp

C 1 (0, n) A higher order singularity

!

k2

2u
kp

C(a(
k2

2u
kp

C 3 (0, t1 ) A saddle

(0, t3 ) A saddle

(rN
k
, n) A centre

a"
k2

2u
kp

C 2 (0, 0) A higher order singularity

(rN
k
,n) A centre

a'
k2

u
kp

C 2 (rJ
k
, 0) A saddle

(rN
k
,n) A centre
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following equations for r
k
and t:

rR
k
"!

1

4

k2

u
kp

r
k
C sin(t), tQ "a!

3

4

k4

u
kp

r2
k
!

1

2

k2

u
kp

C cos(t). (40, 41)

We consider the cases C'0 and C(0 separately. We start with C'0. The critical
points of equations (40) and (41) are given in Table 1, where tM ,tI are solutions

of cos (t)"(2u
kp
/k2C ) a and where rN

k
"J4u

kp
/3k4 (a#(k2/2u

kp
)C), rJ

k
"

J4u
kp
/3k4 (a!(k2/2u

kp
)C). The system is 2n-periodic in t, so we consider t3[0, 2n] . We

see that it makes a di!erence (di!erent bifurcation from critical value) whether
u approaches the critical value 2u

kp
from above or below, i.e., a di!erent behaviour for

a(0 and a'0. For C(0 the analysis is similar, where t is shifted with a factor n.
The behaviour of solutions of equations (40) and (41) in the (r

k
,t) phase space is given in

Fig. 4, for !10)a)10. These phase spaces have been constructed using a numerical
integration method. For the sake of convenience, we have taken p2"0, k"1, C"1, (i.e.,
u

kp
"1). A similar behaviour is obtained for p2'0, kO1 and CO1. It can be shown that

the larger C becomes, the larger the range of a in which interaction occurs.
It should be noted that a "rst integral can be obtained for equations (40) and (41):

cos (2/
k
#at

1
)"c

1

r2
k

#

2u
kp

k2C
a!

3k2

4C
r2
k
,

where c is a constant of integration depending on A
k,0

(0), B
k,0

(0), k2, u
kp
, C.



Figure 4. Phase space for !10)a)10, with r
k

(horizontal) from 0 to 2)5 and t (vertical) from 0 to 2n.
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Next, we consider the case with initial energy present in two modes, m and k, which
means the initial conditions are such that the system initially oscillates in two modes only
(modes m and k). That is, w (x, 0)"q

k
(0) sin kx#q

m
(0) sinmx, w

t
(x, 0)"qR

k
(0) sin kx#

qR
m
(0) sinmx and so r

n
(0)"0 ∀nOk, m. We have the following equations (see equations

(36)}(39)):

rR
k
"!

1

4

k2

u
kp

r
k
C sin (2/

k
#at

1
), (42)
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/Q
k
"!

3

8

k4

u
kp

r2
k
!

1

4

k2

u
kp

m2r2
m
!

1

4

k2

u
kp

Ccos (2/
k
#at

1
), (43)

rR
m
"0, /Q

m
"!

3

8

m4

u
mp

r2
m
!

1

4

m2

u
mp

k2r2
k
. (44, 45)

From equation (44) we can see that r
m
"c

m
with c

m
a constant. Furthermore, /

m
does not

appear in the equations for r
k
, /

k
, so we can analyze the behaviour of solutions of equations

(42)}(45) in the (r
k
, t) phase space (with t"2/

k
#at

1
). The analysis is similar to the

analysis for one mode. The only di!erence is an extra constant term in the equation for t,
!1

4
(k2/u

kp
) m2c2

m
, which means a phase shift for t, which depends on the initial values of

mode m. We will not discuss these equations in more detail.
For initial energy present in more than two modes a similar analysis holds. The

behaviour of solutions can again be analyzed in the (r
k
, t) phase space.

5. CONCLUSIONS

In this paper, we consider an initial}boundary value problem for the vertical
displacement of a weakly non-linear elastic beam with an external force acting in horizontal
direction on the ends of the beam. We have constructed formal approximations of order
e and considered the interaction between di!erent oscillation modes. The analysis presented
in this paper holds for all p3R. In references [11, 12] it has been shown that certain values
of p2 can cause internal resonances. We have shown that in this case this does not occur. We
showed that for all cases mode interactions occur only between modes with non-zero initial
energy (up to O(e)). That is, no modes with zero initial energy are excited up to O(e). We then
say the coupling between the modes is of O(e) and truncation is allowed to those modes with
non-zero initial energy.

We considered the case with no external forcing (F(t)"0) and the case with external
forcing (F(t)"C cos(ut)). For F(t)"0 and C cos(ut) for most u-values, the mode
interaction between the modes with non-zero initial energy is restricted to an interaction
between the di!erent phases: phase shifts occur due to the interaction. The amplitudes of the
oscillating modes remain constant and depend on the initial values only.

We showed that for speci"c values of u, i.e., u"2u
kp

special interactions occur. The
mode interactions between the di!erent oscillation modes is still restricted to an interaction
between the di!erent phases but the amplitude of mode k is no longer constant: the
amplitude of mode k now oscillates around an equilibrium state. This also holds for
u"2u

kp
#ea where a is a detuning parameter. The detuning is considered in section 4.2.2.

It has been shown how the system detunes from the case u"2u
kp

to the case
uO2u

kp
#ea.

In this paper, we considered an harmonic external force of the form F (t)"C cos(ut). This
analysis can be extended to a more general form of F (t), where F is a T-periodic force,
F(t)"a

0
/2#+

n
(a

n
cos (l

n
t)#b

n
sin(l

n
t)) with l

n
"2nn/¹. This has been discussed in

reference [23] for elastic beams or strings. In reference [23], truncation to one or two
oscillation modes is applied, without giving a justi"cation. We have shown that in the cases
discussed in this paper truncation is valid up to O(e). As can be seen in references [11, 12],
truncation to one or two oscillation modes is not valid for all cases. For some cases
discussed in those papers mode interactions occur and more modes have to be taken into
account. In a way similar to the methods in references [11, 12] the problem with a more
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general form of F (t) can be studied. The analysis will essentially be the same (depending on
the function F); however, the equations will become a bit more complicated. A justi"cation
can be given whether truncation is allowed in those cases. This elementary and
straightforward analysis is beyond the scope of this paper.
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APPENDIX A. THE DETERMINATION AND ELIMINATION OF SECULAR TERMS

In section 3 we obtained the following equation for each q
n
:

qK
n
#(n4#p2 )q

n
"!eAF(t)#

=
+
k/1

k2q2
kBn2q

n

for n"1, 2, 3,2 . To avoid secular terms in q
n
(t) a two-time-scales perturbation method

was introduced and q
n
(t) was expanded in q

n
(t)"q

n,0
(t
0
, t

1
)#eq

n,1
(t
0
, t

1
)#2, where

t
0
"t and et. It has been shown that q

n,1
has to satisfy

L2

Lt2
0

q
n,1

#u2
np

q
n,1

"2u
npA

dA
n,0

dt
1

sin (u
np

t
0
)!

dB
n,0

dt
1

cos(u
np

t
0
)B

!ACcos (ut
0
)#

=
+

m/1

m2J
mBn2 (A

n,0
cos (u

np
t
0
)#B

n,0
sin (u

np
t
0
))

(A1)
with

J
m
"1

2
(A2

m,0
#B2

m,0
)#1

2
(A2

m,0
!B2

m,0
) cos (2u

mp
t
0
)#A

m,0
B
m,0

sin (2u
mp

t
0
)

and u
np
"Jn4#p2. The equations for the functions A

n,0
and B

n,0
will now be determined

such that no secular terms occur in q
n,1

. The right-hand side of equation (A1) can be
expanded using geometric formula's and becomes

2u
np

dA
n,0

dt
1

sin (u
np

t
0
)!2u

np

dB
n,0

dt
1

cos (u
np

t
0
)

!
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4
n4[3A
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)#3B
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) sin(u

np
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B
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0
)

#(A
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)!2B
n,0
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) cos ((2u
mp
#u

np
) t
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)
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np
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As stated in section 3, cos (u
np

t
0
) and sin (u

np
t
0
) are homogeneous solutions of q

n,1
. We

want the coe$cients of cos (u
np

t
0
) and sin (u

np
t
0
) in equation (A2) to be equal to zero in

order to eliminate secular terms. This gives us equations for A
n,0

and B
n,0

. From equation
(A2) it can be seen that we have to consider two cases for u: uO2u

np
and u"2u

np
, as is

done in sections 3 and 4 respectively. When the secular terms on the right-hand side of
equation (A1) have been eliminated, the remaining terms are the inhomogeneous part of the
equation for q

n,1
and an inhomogeneous solution for q

n,1
can be determined easily. This is

discussed further at the end of section 3.
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